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The main contribution of this paper is that it introduces the simultaneous capacity optimization of dis-
tributed generation (DG) and storage in grid-connected and standalone microgrids. Hourly planning of
the microgrid operation is performed, taking into consideration certain characteristics of the grid and
the units, together with local climate data that impact the output of non-dispatchable renewable
resources. The proposed formulation constitutes a nonlinear programming problem that is solved by a
sequential quadratic programming method. The model is then applied for a test case microgrid, examin-
ing both grid-connected and standalone operation. Two alternative objective functions are investigated:
(a) the minimization of the total annual energy losses (TAEL), and (b) the minimization of the cost of
energy (COE). Depending on the considered objective function, the results show a significant reduction
in either the TAEL or the COE for the grid-connected microgrid, as well as a higher degree of indepen-
dence from the main grid, which provides the capability of standalone operation. In this case, the energy
storage systems play the most crucial role. Consequently, the results prove the positive effect of the pro-
posed simultaneous capacity optimization of energy storage and DG in the cases of grid-connected and
standalone microgrid operation.

� 2014 Elsevier Ltd. All rights reserved.
Introduction

Microgrids are state-of-the-art low and medium voltage power
distribution networks consisting of distributed generation units,
storage devices and flexible loads, operated connected to the main
power network or islanded, in a controlled, coordinated way [1].
Rapid connection of renewable and non-renewable distributed
generation (DG) resources to the distribution network has been
observed around the world, and the reasons to implement DG
range from energy efficiency or rational use of energy, to deregula-
tion or competitive energy policy, diversification of energy
resources, capability to develop renewable energy sources, reduc-
tion of greenhouse gases and alleviation of global warming, reduc-
tion of on-peak operating cost, availability of modular DG plants,
ease of finding sites for smaller generators, shorter construction
times, lower capital costs of smaller DG plants, network upgrade
delay or deferral, and closeness of DG plant to large loads that leads
to transmission cost reduction [2–6]. Microgrids coordinate dis-
tributed energy resources in a consistently more decentralized
way, thereby reducing the control burden on the grid and permit-
ting them to provide their full benefits. A microgrid operates safely
and efficiently within its local distribution network, but it is also
capable of standalone operation, where the role of energy storage
is more critical, compared to the grid-connected microgrid case [4].

The optimal DG placement (ODGP) problem in power distribu-
tion networks has attracted a lot of research efforts in the last
20 years [2]. Methods applied to solve the ODGP include adapted
analytical expressions [7], hierarchical agglomerative clustering
algorithm [8], genetic algorithm [9], memetic algorithm [10], and
fireworks algorithm – a swarm intelligence based optimization
method [11]. More specifically, an analytical method is proposed
for the determination of the optimal size and power factor of dis-
patchable and nondispatchable DG units in distribution networks
[7]. DG siting and sizing is formulated as a multiobjective optimi-
zation problem, which is solved by a hierarchical agglomerative
clustering algorithm that overcomes the dependency of existing
DG planning methods on global preference information [8]. A
genetic algorithm method, based on average daily load and power
production curves, is developed to determine the optimal locations
and sizes of three types of DG units (solar park, wind farm, and
power station that does not depend on an intermittent primary
energy source) [9]. The determination of the optimal location and
size of DG units and capacitors in distribution networks consider-
ing the voltage stability index is proposed in [10]. The optimal
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Nomenclature

Abbreviations
BSS battery storage system, which mainly consists of a

power conditioning system and a storage unit
CRF capital recovery factor
PCS power conditioning system

Indicators
i,k bus number indicators
j state number indicator
t hour indicator

Parameters
Bik imaginary part of the element of the bus admittance

matrix that refers to the line between buses i and k
Bioa biomass fuel cost parameter a
Biob biomass fuel cost parameter b
Cexch cost of energy exchanged through the substation
CIb biomass units investment cost
CIe batteries investment cost
CIs photovoltaics investment cost
CIw wind turbines investment cost
CMb biomass units annual maintenance cost
CMe batteries annual maintenance cost
CMs photovoltaics annual maintenance cost
CMw wind turbines annual maintenance cost
Daysj total days of the year that state j represents
eff battery efficiency
Gik real part of the element of the bus admittance matrix

that refers to the line between buses i and k
loadj,t percentage of rated load at all buses at hour t of state j
Pbus i rated active power of load at bus i
Pload,total maximum total active power demand
Possj possibility of occurrence of state j
Qbus i rated reactive power of load at bus i
Qload,total maximum total reactive power demand
solarj,t percentage of rated power produced by the photovolta-

ics at hour t of state j
vmax maximum voltage magnitude
vmin minimum voltage magnitude

windj,t percentage of rated power produced by the wind tur-
bines at hour t of state j

dmax maximum voltage angle
dmin minimum voltage angle
/b power factor angle of biomass units
/e power factor angle of BSS
/s power factor angle of photovoltaics
/w power factor angle of wind turbines

Variables
Ei energy storage capacity of the battery of bus i
Echj,i energy charged by the battery of bus i, during the whole

state j
Edisj,i energy discharged by the battery of bus i, during the

whole state j
Pi active power capacity of the battery of bus i
Pbj,i biomass output power at bus i, at state j
Pboughtj,t,1 real power injected by the substation at hour t of

state j for the case of grid-connected microgrid; this
means that Pboughtj,t,1 is the power the microgrid buys
from the transmission network

Pchj,t,i active power charged by the battery of bus i, at hour t of
state j

Pdisj,t,i active power discharged by the battery of bus i, at hour t
of state j

Pinj,t,1 real power injected or absorbed by the substation at
hour t of state j for the case of grid-connected microgrid

Psi rated solar power at bus i
Psoldj,t,1 real power absorbed by the substation at hour t of state j

for the case of grid-connected microgrid; this means
that Psoldj,t,1 is the power the microgrid sells to the
transmission network

Pwi rated wind power at bus i
Qchj,t,i reactive power charged by the battery of bus i, at hour t

of state j
Qdisj,t,i reactive power discharged by the battery of bus i, at

hour t of state j
Qinj,t,1 reactive power injected by the substation at hour t of

state j for the case of grid-connected microgrid
vj,t,i voltage magnitude at bus i, at hour t of state j
dj,t,i voltage angle at bus i, at hour t of state j
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location and size of DG units and the optimal network reconfigura-
tion are simultaneously determined in [11].

Methods applied to solve the ODGP under uncertainties include
point estimate method embedded genetic algorithm [3], plant
growth simulation algorithm with probabilistic optimal power
flow [12], particle swarm optimization and Monte Carlo simulation
[13], and artificial neural networks [14]. The work [12] introduces
the optimal location and size of distributed wind generation units
for a smart distribution network operating under active manage-
ment mode. A multiobjective method is proposed to determine
the optimal location and size of DG units considering the uncer-
tainty of the market price as well as the effect of load models
[13]. Artificial neural networks are proposed to determine the opti-
mal location and size of DG units considering load uncertainty and
DG penetration levels [14]. A systematic qualitative assessment of
the state of the art models and methods applied to the ODGP
together with the contribution of all of the reviewed ODGP works
can be found in [2].

The optimal location and size of energy storage systems (ESS) in
low voltage networks is determined by genetic algorithm and
simulated annealing in [15]. The optimal placement and sizing of
battery switching station units is solved by artificial bee colony
algorithm in [16]. A methodology for the optimal allocation of
battery storage system (BSS) in distribution networks with a high
penetration of wind energy is proposed in [17]. A method for find-
ing the optimal size of BSS for primary frequency control of a
microgrid is developed in [18]. A statistical model is used to deter-
mine the capacity of battery–superconductor hybrid energy stor-
age system in autonomous microgrid [19]. The state-of-the-art of
research on optimum sizing of standalone hybrid solar–wind power
generation systems with battery storage can be found in [20].

From the above survey, it is obvious that sufficient work has
been done in the area of sizing of DG and BSS. However, the prob-
lem of simultaneous sizing of BSS and DG (dispatchable and non-
dispatchable) in grid-connected and standalone microgrids has
not been tackled yet.

This paper introduces the simultaneous capacity optimization
of distributed generation and battery storage in microgrids,
considering their two possible operation states, namely, grid-
connected or standalone (autonomous) microgrid operation. More
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specifically, our methodology is applied to a medium voltage micro-
grid, i.e., a power distribution network with distributed generation
and energy storage, which network has the capability for grid-con-
nected and standalone operation. Hourly load, wind and solar data
are considered, because they have been already proved to be a very
realistic representation for the case of ODGP [2]. In order for the
microgrid to function optimally, it has to incorporate two types
of DG units: (1) dispatchable (biomass in this paper), and (2)
non-dispatchable (wind turbines and photovoltaics in this paper).
The reason is that the output power of the dispatchable DGs can
be easily regulated by special mechanisms, whereas the output
power of the non-dispatchable DGs depends on stochastic vari-
ables, such as wind speed or solar irradiance, which means that
non-dispatchable DGs carry a high degree of uncertainty. In the
proposed formulation, energy storage systems (battery storage in
this paper) have been integrated, as they are necessary, especially
for the case of a standalone microgrid, where the power imbal-
ances cannot be balanced by a main grid. Energy storage systems
offer the ability to store the extra energy produced by the DG units
when it is higher than the load demand and to discharge this
energy when the DG units do not produce enough for the demand
to be covered [4]. For energy storage systems, the planning of
charge/discharge hours and the hourly planning of charge/dis-
charge power is essential for the optimal functioning of the micro-
grid. The simultaneous capacity optimization of distributed
generation and battery storage is formulated as a nonlinear optimi-
zation problem that is solved by sequential quadratic program-
ming. The results prove the positive effect of the proposed
optimal simultaneous capacity optimization of battery storage
and distributed generation in the cases of grid-connected and
standalone microgrid operation.

The article is structured as follows. Section ‘Modelling of load,
wind, and solar data’ presents the modelling of load, wind, and
solar data. Section ‘Distributed generation and battery modelling’
describes the modelling of DG and storage units. Section ‘Problem
formulation and solution’ presents the proposed formulation and
solution method for the simultaneous capacity optimization of bat-
tery storage and distributed generation for the cases of grid-con-
nected and standalone microgrid. The data for a test case
microgrid are given in Section ‘Data for the test case microgrid’.
Results and discussion for the cases of grid-connected and stand-
alone microgrid operation are provided in Sections ‘Results and
discussion for the case of grid-connected microgrid’ and ‘Results
and discussion for the case of standalone microgrid’, respectively.
Section ‘Conclusion’ concludes the paper.
Modelling of load, wind, and solar data

The annual wind, solar, and ambient temperature data needed
for the estimation of wind turbines and photovoltaics performance
refer to measurements for the mountainous region of Keramia
(altitude 500 m), in Chania, Crete, Greece [5]. These measurements
were taken for a period of four years, and statistical analysis (e.g.,
peak, average, and minimum values) of the measurements was
done. The annual peak load of the microgrid has been considered
equal to 1.806 MW, whereas the necessary microgrid load profile
was computed by downscaling the actual annual load profile of
Crete [5]. In this paper, after retrieving this data, the annual wind
speed, solar irradiance and load profile are utilized to generate,
for each season (winter, spring, summer, fall), three representative
typical days/states: one where each data element (wind speed,
solar irradiance, and load) is at its maximum value, one where each
data element is at its minimum value and one where each data ele-
ment is as close as possible to its average value. More specifically,
the average day of each season is the day for which its 24 hourly
values present the lowest standard deviation compared to the cor-
responding 24 hourly average values of that season. Thus, there are
in total 12 typical states throughout the year, each representing a
certain amount of days and each consisting of 24 hourly time seg-
ments. This means that the actual states on which the problem
works are 288. Thus, although the three data elements (wind
speed, solar irradiance, and load) have a different probability dis-
tribution, the assumption of only 12 typical states is made to sim-
plify the problem and facilitate the running of the software. Similar
simplified assumptions are commonly used for the sizing of dis-
tributed generation and energy storage [2,20].

Each of these states is characterized by a possibility of occur-
rence (parameter Possj). More specifically, it is assumed that every
typical day of every season has a certain probability to occur,
which means that, e.g. in the winter, the probability of occurrence
for the ‘‘maximum day’’ is Poss1, the probability of occurrence for
the ‘‘minimum day’’ is Poss2, and the probability of occurrence
for the ‘‘average day’’ is Poss3, with Poss1 + Poss2 + Poss3 = 1. For
each hour of each state, three basic parameter values are calcu-
lated: the output of the wind turbines as a percentage of their rated
power, the output of the photovoltaics as a percentage of their
rated power and the load level as a percentage of its maximum.
These parameter values (windj,t, solarj,t and loadj,t, respectively)
are calculated in Section ‘Distributed generation and battery mod-
elling’ and are integrated in the mathematical formulation of Sec-
tion ‘Problem formulation and solution’. The time-varying multi-
level modelling of load, wind speed and solar irradiance data
adopted in this paper has been already proved to be a very realistic
representation for the case of ODGP [2,21,22]. In brief, this paper
adopts the probabilistic methodology of [21] and [22], according
to which a probabilistic load and generation model is created that
combines the operating conditions of load levels and DG units
using their respective probabilities, thus accommodating this
model in a deterministic one.
Distributed generation and battery modelling

Wind turbines modelling

The power generated by the wind turbine (WT) is computed as
follows [21]:

Pw;out ¼

0; if vw < vci

Pw;r � vw�vci
vw;r�vci

; if vci 6 vw < vw;r

Pw;r ; if vw;r 6 vw < vco

0; if vco 6 vw

8>>><
>>>:

ð1Þ

where vw is the wind speed, vci is the cut-in wind speed, vw,r is the
rated wind speed, vco is the cut-out wind speed, Pw,out is the turbine
output power, and Pw,r is the turbine rated power. Eq. (1), which is
the characteristic power curve of the wind turbine, shows that the
output power is zero when the wind speed is too low or too high,
linear when the wind speed varies between the cut-in and the rated
wind speed, and equal to the rated power for wind speeds between
the rated and the cut-out wind speed.

Thus, the ratio Pw,out/Pw,r (parameter windj,t) is calculated from
the wind speed data of each hour of each state. This parameter rep-
resents the output power of all the wind turbines at all buses, as a
percentage of their rated power, during each hour of each state
[21]. Thus, it is a global, only time-depending parameter that
affects equally all wind turbines. The rated power at each bus is
one of the design variables of the problem and is combined with
parameter windj,t in the power flow equations, to represent the
actual power output (Section ‘Power flow equations’).
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Photovoltaics modelling

The output power of the photovoltaics (PV) depends on the
characteristics of the solar cell itself, as well as on the external irra-
diance and temperature conditions, according to the following
equations [21]:

Tc ¼ Ta þ
ðTn � 20Þ

0:8
G ð2Þ

V ¼ Voc � KvðTc � 25Þ ð3Þ

I ¼ G � Isc þ KiðTc � 25Þ½ � ð4Þ

FF ¼ VmaxImax

VocIsc
ð5Þ

Ps;out ¼ FF � V � I ð6Þ

where Ta is the ambient temperature of the site, Tn is the nominal
operating temperature of the PV cell, Tc is the temperature of the
PV cell, Kv is the voltage temperature coefficient, Ki is the current
temperature coefficient, Voc is the open circuit voltage, Isc is the
short circuit current, Vmax is the voltage at maximum power point,
Imax is the current at maximum power point, FF is the fill factor, V is
the voltage, I is the current, G is the solar irradiance, Ps,out is the solar
cell output power, and Ps,r is the solar cell rated power.

The above equations describe the electrical behaviour of the PV
cells. The more solar irradiance reaches the cell, the more current
flows through it (Eq. (4)), resulting in higher output power (Eq.
(6)). That is why in modern technologies the PV panels are tilted
to face the sun directly, so as to gather maximum irradiance. Most
of the parameters are given by the solar cells manufacturer.

Thus, the ratio Ps,out/Ps,r (parameter solarj,t) is calculated from
the solar irradiance data of each hour of each state. This parameter
represents the output power of all the photovoltaics at all buses, as
a percentage of their rated power, during each hour of each state
[21]. Thus, it is a global, only time-depending parameter that
affects equally all photovoltaics. The rated power at each bus is
one of the design variables of the problem and is combined with
parameter solarj,t in the power flow equations, to represent the
actual power output (Section ‘Power flow equations’). The PVs
are equipped with reactive power capable PV inverters [23].

Biomass modelling

The biomass unit is a dispatchable DG, so its output power is
controllable on a daily basis. Its technology is considered to be
gas turbine with biogas fuel. This type presents desirable opera-
tional characteristics, including wide range of operation, quick
response, and ability for several starts and stops of operation per
day. The cost curve of each biomass unit is assumed to be linear,
whereas its rated power at a certain bus is considered equal to
the maximum output power of this unit throughout the year. As
a dispatchable DG, the operation of the biomass unit is not affected
by external weather conditions, so there is no weather depending
parameter, as in Sections ‘Wind turbines modelling’ and ‘Photovol-
taics modelling’.

Battery modelling

The battery storage system (BSS) consists mainly of a power
conditioning system (PCS) and a storage unit. A PCS permits a
BSS to generate both active and reactive power in all four quad-
rants [24]. The batteries that are used in this paper follow a daily
charge–discharge cycle. Ideally, the daily energy stored should be
fully released. Due to energy losses, though, the battery efficiency
drops. In this model, the batteries charge power during some hours
and discharge power to the microgrid during other hours. Thus,
they can be modelled either as a load or as a power source. The
exact charge–discharge hours can be easily regulated, taking into
consideration the hourly load and climate conditions. The follow-
ing equations are used [17]:

Echj;i ¼
X24

t¼1

Pchj;t;i 8 j; i ð7Þ

Edisj;i ¼
X24

t¼1

Pdisj;t;i 8 j; i ð8Þ

Pchj;t;i 6 Pi 8 j; t; i ð9aÞ

Pdisj;t;i 6 Pi 8 j; t; i ð9bÞ

Echj;i 6 Ei 8j; i ð10Þ

Eq. (7) (Eq. (8)) shows that the total energy charged (discharged) at
the battery of each bus, during each state, is equal to the daily sum
of the energy charged (discharged) at each hour. This hourly energy
is arithmetically equal to the hourly power the battery charges or
discharges, as the latter is constant and the time segment is 1 h.
Eqs. (9a) and (9b) indicate that the active power capacity is equal
or higher than the maximum hourly power charged or discharged
throughout the year. Eq. (10) shows that the energy storage capac-
ity is equal or higher than the maximum daily energy charged
throughout the year.

Problem formulation and solution

This section presents the proposed formulation of the simulta-
neous capacity optimization of storage and distributed generation
in a microgrid that operates either grid-connected or standalone.
The proposed formulation constitutes a nonlinear programming
optimization problem that seeks the optimum sizes of distributed
resources (WT, PV, biomass, and battery) to be installed into an
existing microgrid, so as to either minimize the total annual energy
loss of the microgrid or to minimize the cost of energy, subject to
microgrid network operating constraints and battery operation
constraints. It should be noted that the considered distributed
resources (WT, PV, biomass, and battery) can be placed at selected
buses of the microgrid, which are called feasible connection points
[25]. As a result, the proposed formulation aims at finding which
types of distributed resources are really needed at each specific
bus, together with the sizes of the distributed resources.

Objective functions

In this paper, two alternative objective functions are
investigated:

1. The minimization of the total annual energy loss (TAEL), defined
in Section ‘Minimizing TAEL’.

2. The minimization of the cost of energy (COE), defined in Sec-
tion ‘Minimizing COE’.

Minimizing TAEL

In this case, the objective function is the minimization of the
total annual energy loss (TAEL) due to the resistance of the lines.
Alternatively, the minimization of the total power loss of the sys-
tem, which is another objective often used in ODGP [2], could be
also considered. The TAEL objective, which is commonly used in
DG planning problems [2,21,22,26], is computed as follows [21]:



E.E. Sfikas et al. / Electrical Power and Energy Systems 67 (2015) 101–113 105
TAEL ¼
X12

j¼1

Daysj � Possj �
X24

t¼1

Powerlossj;t ð11Þ

where

Powerlossj;t ¼0:5
X

i;k

Gik v2
j;t;iþv2

j;t;k�2v j;t;iv j;t;k cosðdj;t;k�dj;t;iÞ
h i

8 j;t

ð12Þ

The total power loss at each hour of each state, Powerlossj,t, is
obtained from the usual power flow equations. It should be noted
that Eq. (12) refers to pairs of different buses, so the sum is valid
only for different values of i and k, thus i – k. The factor 0.5 is
put because each bus combination appears twice in the sum. This
hourly power loss is arithmetically equal to the hourly energy loss
of the lines, as the power is constant and the time segment is one
hour. This energy loss is then summed up for all the hours and days
of the year to give the total annual energy loss (Eq. (11)). There are
3 possible typical days/states in each of the 4 seasons. Each of these
3 states is associated with a possibility of occurrence, which is rep-
resented by parameter Possj. For each season, these possibilities
sum up to 1, so Eq. (11) is, in fact, a sum with different weights
on the daily energy loss of each possible state.
Minimizing COE

In this case, the objective function is the minimization of the
cost of energy (COE) [5]. The cost of energy is a very good measure
of power generation cost; that is why COE is commonly used in siz-
ing distributed energy resources [27]. The cost of energy is com-
puted as follows [5,27]:

COE ¼ Cantot

Eanserved
ð13aÞ

where

Cantot ¼Cexch �
X12

j¼1

Daysj � Possj �
X24

t¼1

Pinj;t;1 þ CRF �
X

i

ðCIw � Pwi

þ CIs � Psi þ CIb �maxjðPbj;iÞ þ CIe � PiÞ
þ
X

i

ðCMw � Pwi þ CMs � Psi þ CMb �maxjðPbj;iÞ þ CMe � PiÞ

þ
X24

t¼1

X12

j¼1

Daysj � Possj �
X

i

ðBioa þ Biob � Pbj;iÞ ð13bÞ
Substation
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Fig. 1. 31-bus medium voltage microgrid.
Eanserved ¼
X12

j¼1

Daysj � Possj �
X24

t¼1

Psoldj;t;1 þ
X

i

X12

j¼1

Daysj � Possj

�
X24

t¼1

loadj;t � Pbus i ð13cÞ

Eq. (13a) shows that the COE is equal to the ratio of the total annu-
alized cost (Cantot) to the total annual energy served (Eanserved). More
specifically, Eq. (13b) indicates that the total annualized cost con-
sists of the cost the microgrid pays or is paid when energy is bought
(positive Pinj,t,1) or sold (negative Pinj,t,1) through the substation, the
annualized capital (investment) costs for DGs and batteries, the
annualized maintenance costs for DGs and batteries, and the annual
biomass fuel cost, which is only calculated for the scenarios that
include biomass units. Eq. (13c) shows that the total annual energy
served is the sum of the hourly energy that is sold to the main grid
(when this happens) plus the total load served throughout the year.
Constraints of grid-connected microgrid

The constraints involve technical constraints of the microgrid,
as well as battery daily cycle constraints.

Power flow equations

Pinj;t;1þwindj;tPwiþ solarj;tPsiþPbj;i�Pchj;t;iþPdisj;t;i� loadj;tPbus i

¼ v2
j;t;iGiiþv j;t;i

X
k

v j;t;kðGik cosðdj;t;i�dj;t;kÞþBik sinðdj;t;i�dj;t;kÞÞ;8j;t; i

ð14Þ

Qinj;t;1 þ tan/wwindj;tPwi þ tan/ssolarj;tPsi þ tan/bPbj;i �Qchj;t;i

þQdisj;t;i � loadj;tQ bus i ¼�v2
j;t;iBii þ v j;t;i

X
k

v j;t;kðGik sinðdj;t;i � dj;t;kÞ

� Bik cosðdj;t;i � dj;t;kÞÞ; 8 j; t; i ð15Þ

The above equations show that the active or reactive power
injected at each bus comes from the DG sources and the discharg-
ing of the batteries, whereas at each bus, power is absorbed from
the loads as well as the charging of the batteries. The terms Pinj,t,1

and Qinj,t,1 are used only for the slack bus (i = 1) and refer to the
power exchange between the main grid and the microgrid through
the substation. Positive values mean that power is injected in the
microgrid from the main grid, whereas negative values mean that
power is injected in the main grid from the microgrid. Thus, the
substation plays a crucial role, balancing the power flow of the sys-
tem. As in Eq. (12), the sums are valid for i – k.

Voltage limits at all buses

vmin 6 v j;t;i 6 vmax 8 j; t; i ð16Þ

dmin 6 dj;t;i 6 dmax 8 j; t; i ð17Þ
Voltage at slack bus (considered to be bus 1)

v j;t;1 ¼ 1 p:u: 8 j; t ð18Þ

dj;t;1 ¼ 0 8 j; t ð19Þ
Demand covering

The total power discharged by the batteries at any hour should
be no more than the total demand during that hour, in order to



0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 13 15 17 19 21 23 1 3 5 7 9 11 13 15 17 19 21 23 1 3 5 7 9 11 13 15 17 19 21 23 1 3 5 7 9 11 13 15 17 19 21 23

H
ou

rl
y 

lo
ad

 a
s a

 p
er

ce
nt

ag
e 

of
 p

ea
k 

lo
ad

 (%
)

Hours

Maximum Load
Minimum Load
Average Load

Winter
Spring

Summer
Fall

Fig. 2. Hourly load, for all the seasons, at all buses, as a percentage of peak load.

106 E.E. Sfikas et al. / Electrical Power and Energy Systems 67 (2015) 101–113
minimize the power exchange between the microgrid and the
main network [17]:X

i

ðPdisj;t;iÞ 6
X

i

loadj;tPbus i 8 j; t ð20Þ
Daily battery cycle

In order to facilitate the system operation, the following practi-
cal rule is applied: the daily energy discharged by the batteries
should be equal to the daily energy charged multiplied by the bat-
tery efficiency, so that no energy is accumulated day after day.

Edisj;i ¼ eff � Echj;i 8 j; i ð21Þ

Qchj;t;i ¼ tan /e � Pchj;t;i 8 j; t; i ð22Þ

Qdisj;t;i ¼ tan /e � Pdisj;t;i 8 j; t; i ð23Þ
Auxiliary variables for substation power

Through the substation, power can be: (1) injected (positive
Pinj,t,1), i.e., Pboughtj,t,1 is the power the microgrid buys from the
transmission network, or (2) absorbed (negative Pinj,t,1), i.e.,
Psoldj,t,1 is the power the microgrid sells to the transmission
network. This separation is necessary in order to calculate the first
term of Eq. (13c). Consequently, the auxiliary variables Pboughtj,t,1

and Psoldj,t,1 are computed as follows:

Pboughtj;t;1 ¼
Pinj;t;1; if Pinj;t;1 > 0
0; if Pinj;t;1 6 0

�
8 j; t ð24Þ

Psoldj;t;1 ¼
0; if Pinj;t;1 P 0
�Pinj;t;1; if Pinj;t;1 < 0

�
8 j; t ð25Þ

This is modeled in GAMS as follows:

Pinj;t;1 ¼ Pboughtj;t;1 � Psoldj;t;1 8 j; t ð26Þ

where

Pboughtj;t;1 P 0 8 j; t ð27Þ

Psoldj;t;1 P 0 8 j; t ð28Þ

Pboughtj;t;1 � Psoldj;t;1 ¼ 0 8 j; t ð29Þ

Eq. (29) means that at least one of the two parameters (Pboughtj,t,1

and Psoldj,t,1) is always zero, so, taking also Eq. (26) into account,
Pinj,t,1 is always equal to only one of these two parameters
(Pboughtj,t,1 or �Psoldj,t,1).

Extra constraints for standalone microgrid

The constraints (30) and (31) are applicable only for the stand-
alone operation of the microgrid, when the real and reactive power
that is exchanged through the substation should be as low as pos-
sible, which is controlled with the use of the control parameter a,
which has to take very low value, e.g., a = 0.002. This parameter,
multiplied with the sum of the rated load at all buses, sets the strict
boundaries for the power exchange, forcing the microgrid to func-
tion, in fact, autonomously:

�a � Pload;total 6 Pinj;t;1 6 a � Pload;total 8 j; t ð30Þ

�a � Q load;total 6 Qinj;t;1 6 a � Q load;total 8 j; t ð31Þ
Design variables and solution method

The design variables of the optimization problem (11)–(31) are
the following:

1. At each bus i, the capacity size (MW) of the DG units is the first
group of design variables. More specifically, these design vari-
ables are the rated wind power (Pwi), the rated solar power
(Psi), and the rated biomass power (maxj(Pbj,i)).

2. At each bus i, the capacity size (MW) of the batteries, which is
denoted by the variable Pi, is the second group of design
variables.

3. At each bus i, the energy size (MW h) of the batteries, which is
denoted by the variable Ei, is the third group of design variables.

The optimization problem (11)–(31) is a nonlinear program-
ming problem that is solved by a sequential quadratic program-
ming algorithm on General Algebraic Modelling System (GAMS)
environment, using the SNOPT solver of GAMS [28]. Sequential
quadratic programming was chosen, since it is one of the best
methods for solving nonlinear programming problems [29], [30].

The batteries can either charge from the power produced by the
DGs or from the power that origins from the main grid through the
substation. There is no power flow limitation as to where the
charge power comes from. It is up to the solver to determine the
exact power flow in the microgrid at each hour of each state, so
as to optimize the objective function.



Table 1
Results for grid-connected microgrid, minimizing TAEL, examining all studied scenarios.

Candidate buses Scenarios

Initial
system,
no DGs

Only wind
power

Only solar
power

Only biomass
power

All 3 DG types All DG types and batteries

Wind turbines
rated power
(MW)

PVs rated
power
(MW)

Biomass units
rated power
(MW)

Wind turbines
rated power
(MW)

PVs rated
power
(MW)

Biomass units
rated power
(MW)

Wind turbines
rated power
(MW)

PVs rated
power
(MW)

Biomass units
rated power
(MW)

Batteries
rated power
(MW)

Batteries
energy rating
(MW h)

Bus 2 – 0 0.826 0 0 0.162 0 0 0.399 0 0.299 1.528
Bus 4 – 0.398 0 0 0.096 0 0 0.129 0 0 0.179 0.972
Bus 6 – 0 0.350 0 0 0.065 0 0 0.345 0 0.297 1.832
Bus 7 – 0.210 0 0 0.037 0 0 0.041 0 0 0.142 0.530
Bus 10 – 0 0 0.764 0 0 0.455 0 0 0.196 0 0
Bus 11 – 0 0.374 0 0 0.037 0 0 0.348 0 0.333 2.047
Bus 13 – 0.232 0 0 0.162 0 0 0.156 0 0 0.130 0.718
Bus 17 – 0 0 0.191 0 0 0.216 0 0 0.457 0 0
Bus 18 – 0.532 0 0 0 0 0 0 0 0 0.166 0.801
Bus 19 – 0 0 0.921 0 0 0.738 0 0 0.735 0 0
Bus 22 – 0 0.362 0 0 0 0 0 0.133 0 0.087 0.393
Bus 24 – 0 0 0.286 0 0 0.351 0 0 0.093 0 0
Bus 28 – 0 0.752 0 0 0.328 0 0 1.322 0 1.098 7.107
Bus 30 – 0.548 0 0 0.371 0 0 0.192 0 0 0.411 2.425

Total rated power or
energy

– 1.920 2.664 2.162 0.666 0.592 1.760 0.518 2.547 1.481 3.142 18.353

Annual energy loss
(MW h), objective
function

199.360 101.984 123.367 86.372 43.754 17.082

Loss reduction in
comparison with the
initial system (%)

0 49 38 57 78 91

COE (€/MW h) 51.213 54.404 51.939 169.808 174.793 206.255
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Table 2
Results for grid-connected microgrid, minimizing COE, examining all studied scenarios.

Candidate buses Scenarios

Initial
system,
no DGs

Only wind
power

Only solar
power

Only biomass
power

All 3 DG types All DG types and batteries

Wind turbines
rated power
(MW)

PVs rated
power
(MW)

Biomass units
rated power
(MW)

Wind turbines
rated power
(MW)

PVs rated
power
(MW)

Biomass units
rated power
(MW)

Wind turbines
rated power
(MW)

PVs rated
power
(MW)

Biomass units
rated power
(MW)

Batteries
rated power
(MW)

Batteries
energy rating
(MW h)

Bus 2 – 0 0.991 0 0 0.197 0 0 0.609 0 0 0
Bus 4 – 0.808 0 0 2.015 0 0 0 0 0 0 0
Bus 6 – 0 0.319 0 0 0 0 0 0 0 0 0
Bus 7 – 0.178 0 0 0.077 0 0 0 0 0 0 0
Bus 10 – 0 0 0 0 0 0 0 0 1.564 0 0
Bus 11 – 0 0.338 0 0 0 0 0 0 0 0.087 0.420
Bus 13 – 0.182 0 0 0.083 0 0 0 0 0 0.119 0.789
Bus 17 – 0 0 0.694 0 0 0 0 0 0 0 0
Bus 18 – 1.841 0 0 0.296 0 0 0.092 0 0 0 0
Bus 19 – 0 0 3.801 0 0 3.762 0 0 3.932 0 0
Bus 22 – 0 0.349 0 0 0 0 0 0 0 0 0
Bus 24 – 0 0 0 0 0 0 0 0 0.930 0 0
Bus 28 – 0 0.674 0 0 0.230 0 0 0.040 0 0.049 0.116
Bus 30 – 0.460 0 0 0 0 0 0.162 0 0 0.130 0.732

Total rated power or
energy

– 3.469 2.671 4.495 2.471 0.427 3.762 0.254 0.649 6.426 0.385 2.057

Annual energy loss
(MW h)

199.360 140.717 124.039 930.178 792.927 1700.563

COE (€/MW h), objective
function

51.213 48.032 51.909 42.372 38.065 23.853

Cost reduction in
comparison with the
initial system (%)

0 6 �1 17 26 53
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Data for the test case microgrid

The system under study consists of a 31-bus medium voltage
(MV) microgrid (Fig. 1), which is part of the 69-bus radial distri-
bution feeder, the data of which can be found in [31]. The MV
level is 11 kV, with limits of ±6% for the voltage magnitude
[31] at all buses except the slack bus for which the voltage mag-
nitude is kept at its nominal value according to constraint (18).
Fig. 2 presents the load at all buses as a percentage of their peak
load (parameter loadj,t) for all the hours of each state of each
season.

The wind speed, solar irradiance and load data are taken from
measurements for the island of Crete, Greece (Section ‘Modelling
of load, wind, and solar data’). The wind turbines used have a
cut-in wind speed of 4 m/s, a rated wind speed of 16 m/s and a
cut-out speed of 25 m/s [21]. Their power factor is assumed to be
0.9 lagging. They can be connected at buses 4, 7, 13, 18 and 30.
The power factor of the photovoltaics is assumed to be 0.8 lagging.
The photovoltaics can be connected at buses 2, 6, 11, 22, 28. Bio-
mass units have a maximum efficiency of 36%, whereas their
power factor is assumed to be 0.8 lagging. They can be connected
at buses 10, 17, 19, 24.
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The batteries follow two different daily cycles: (1) Type A batteries
charging from 8:00 until 20:00 (hours 9–20) and discharging from
20:00 until 8:00 (hours 1–8 and 21–24), whose candidate buses
are 2, 6, 11, 22 and 28, and (2) Type B batteries discharging from
8:00 until 20:00 and charging from 20:00 until 8:00 (reverse cycle
in comparison with Type A batteries), whose candidate buses are
4, 7, 13, 18 and 30. More specifically, Type A batteries take advantage
of the high solar irradiance during the day (as they are connected at
the same buses that also have photovoltaics connected), thus storing
energy, which they can release during the night. Type B batteries, on
the other hand, take advantage of the wind speed during the night
(as they are connected at the same buses that also have wind tur-
bines connected), in combination with the low load demand during
these hours, thus storing energy, which they can release during the
day, when the load demand is high. These two types are thus com-
plementary, so at every hour, energy can be stored and released
simultaneously in the microgrid. The battery efficiency is 75% and
the ESS power factor is assumed to be 0.8 lagging, which means that
ESS charges or discharges both real and reactive power.

It should be noted that the concept of establishing in advance
in which time steps the batteries charge and discharge has been
successfully applied in [17] for the optimal sizing of batteries in
9 11 13 15 17 19 21 23 1 3 5 7 9 11 13 15 17 19 21 23
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distribution systems with a high wind energy penetration, where
one type of batteries charging/discharging profile is used, while
in this paper, two types of batteries charging/discharging profiles
are used. Interested readers can find more information in [32]
regarding the optimal selection of charging/discharging scheduling
of batteries in distribution systems with PV generation systems.

As is common practice for the analyzed case study system, a fixed
price (parameter Cexch) of 50 €/MW h is considered for the energy
bought from the main grid or sold to it through the substation. How-
ever, in other case study networks, an energy tariff could be also used.
Results and discussion for the case of grid-connected microgrid

In the case of a grid-connected operation, i.e., the microgrid of
Section ‘Data for the test case microgrid’ is connected to the main
grid through the substation, various scenarios are tested and the
results shown in Tables 1 and 2 are discussed in Sections ‘Minimiz-
ing TAEL’ and ‘Minimizing COE’, respectively. More specifically,
Tables 1 and 2 present the rated power of the DGs and batteries
and the energy rating of the batteries at each candidate bus, for
all the scenarios studied. The total rated power is then calculated
underneath. The value of the objective function is presented for
all the scenarios, as well its reduction (in comparison with the ini-
tial microgrid that has neither DGs nor batteries). Finally, the value
of the other objective function (which is just calculated from the
results, by the software, and not minimized) is also shown.
Minimizing TAEL

It can be seen from Table 1 that the installation of even one DG
type reduces the microgrid annual energy losses by 38% for the
case of PV, 49% for the case of WT and 57% for the case of biomass
DG. The maximum annual energy loss reduction is achieved by the
biomass DGs, since their production is constant and regulated.
Examining the non-dispatchable units, the photovoltaics reduce
the losses less than the wind turbines, because there is no irradi-
ance at night, so during these hours there is no actual difference
with the initial system, whereas the wind can blow at any time.

When all three DG types are installed (wind, solar, and bio-
mass), the microgrid annual energy losses are reduced by 78%,
since there is a kind of co-operation between the DG units.
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Fig. 5. Hourly charge power (positive values)/discharge power (negative values), in MW
connected operation, when minimizing TAEL.
In a microgrid containing all three types of DG units, the
addition of battery storage units achieves the maximum annual
energy loss reduction for the microgrid, namely 91%. In this case,
the highest values for the battery rated power are observed at
the buses that also contain photovoltaics. A high solar energy
penetration in the system is also observed. On the other hand,
the buses that also contain wind turbines have a lower battery
rated power. Thus, the batteries operate with higher power when
following a daily cycle of charging during the day and discharging
during the night.

It can be observed from Table 1 that the cost of energy (which,
in this case, is just calculated) constantly increases when installing
more types of DG and storage units. This remark is very interest-
ing; however it should not be taken for granted to happen in any
other case, as it depends on the parameters of the test case micro-
grid (e.g., the values of the cost parameters involved in the calcu-
lation of COE).

The hourly energy loss at the average day of each season, for all
the scenarios, is shown in Fig. 3. It can be observed that the max-
imum losses occur late in the evening, as it is then that the load
levels are at their maximum. By installing storage units, though,
the hourly variations are almost eliminated.

In Figs. 4 and 5, the daily battery cycles (at buses 4 and 28,
respectively) for the average day of each season are presented.
For night-charging batteries (bus 4), the whole energy is dis-
charged in the evening (Fig. 4). For day-charging batteries (bus
28), the charging follows in some way the sun profile, as the peak
occurs at noon hours, and the discharging is uniform at all hours
(Fig. 5).
Minimizing COE

In this case, it can be seen from Table 2 that the results are quite
similar with the ones of Section ‘Minimizing TAEL’ concerning
which DG types provide a better optimization. The biomass units
are the most efficient in reducing the cost. In this case, the differ-
ence is that the total rated power of the DGs is mostly concentrated
at the buses closest to the slack bus (Fig. 1). A possible explanation
for this is that DG units at these buses provide more power directly
to the main grid, resulting in more energy sold (Eq. (13c)), which
also provides a lower cost (Eq. (13b)).
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It should be noted that the annual energy losses (which, in this
case, are just calculated) do not drop by installing more DG types
and batteries. In contrary, they increase significantly. This is due
to the fact that priority is given to the cost and not to the power
flow, since the optimization objective is the minimization of the
cost of energy.

Results and discussion for the case of standalone microgrid

In the case of standalone operation, the microgrid of Sec-
tion ‘Data for the test case microgrid’ is disconnected from the
main grid. The control parameter a is set equal to 0.002. It should
be noted that these very small power imbalances of 0.2%
(a = 0.002) can be balanced as follows: the substation can be
replaced, in reality, by a small DG plant when injecting power
and by a dump load when absorbing power.

The results are shown in Tables 3 and 4. They present the rated
power of the DGs and batteries and the energy rating of the batter-
ies at each candidate bus, for standalone operation of the micro-
grid. The total rated power is then calculated underneath. The
value of the objective function is also presented. Finally, the value
of the other objective function (which is just calculated from the
results, by the software, and not minimized) is also shown.
Table 3
Results for standalone microgrid, minimizing TAEL.

Candidate buses Wind turbines rated
power (MW)

PVs rated power
(MW)

Bus 2 0 0
Bus 4 0 0
Bus 6 0 0
Bus 7 0 0
Bus 10 0 0
Bus 11 0 0
Bus 13 0.174 0
Bus 17 0 0
Bus 18 0 0
Bus 19 0 0
Bus 22 0 0
Bus 24 0 0
Bus 28 0 0
Bus 30 0.188 0

Total rated power or energy 0.362 0
Annual energy loss (MW h),

objective function
189.153

COE (€/MW h) 235.447

Table 4
Results for standalone microgrid, minimizing COE.

Candidate buses Wind turbines rated power
(MW)

PVs rated power
(MW)

Bi
(M

Bus 2 0 0 0
Bus 4 0 0 0
Bus 6 0 0 0
Bus 7 0.099 0 0
Bus 10 0 0 0.
Bus 11 0 0 0
Bus 13 0 0 0
Bus 17 0 0 0.
Bus 18 0.001 0 0
Bus 19 0 0 0.
Bus 22 0 0 0
Bus 24 0 0 0.
Bus 28 0 0 0
Bus 30 0.214 0 0

Total rated power or energy 0.314 0 1.
Annual energy loss (MW h) 422.951
COE (€/MW h), objective

function
151.054
Minimizing TAEL

The results for the standalone microgrid are shown in Table 3.
In this case, the standalone microgrid annual energy losses are
comparative to those of the grid-connected microgrid with neither
DG nor storage units. The cost of energy is higher, too. Also, the
rated power of non-dispatchable DG units is very low; these units
are almost unnecessary. On the other hand, the biomass rated
power, as well as the battery rated power and energy rating are
highly increased. This means that the standalone microgrid needs
these units much more than the grid-connected microgrid. In the
case of standalone microgrid, the power imbalances cannot be bal-
anced by the main grid anymore, so the biomass units and the bat-
teries undertake this task. The conclusion is that the standalone
operation of the microgrid necessitates more certain, well-pro-
grammed dispatchable units (biomass and battery), rather than
non-dispatchable units (WT and PV) with uncertain and non-con-
trollable output power.

In Fig. 6, the mean daily real power injected or absorbed
through the substation for some of the examined cases is pre-
sented, when minimizing TAEL. It can be concluded that the DG
and storage units make the microgrid much more autonomous,
as it needs much less power exchange with the main grid.
Biomass units rated
power (MW)

Batteries rated power
(MW)

Batteries energy rating
(MW h)

0 1.485 3.950
0 1.799 5.361
0 1.625 5.566
0 1.631 5.336
0.824 0 0
0 1.365 3.763
0 0.687 2.272
0.537 0 0
0 1.495 9.709
1.046 0 0
0 1.094 3.502
0.296 0 0
0 0.816 4.187
0 0.728 3.745

2.703 12.725 47.391

omass units rated power
W)

Batteries rated power
(MW)

Batteries energy rating
(MW h)

0.798 2.913
0 0
0.532 2.095
0.831 2.748

581 0 0
0.295 1.603
0.664 1.873

069 0 0
0.802 2.597

824 0 0
0.693 2.848

341 0 0
0.181 0.973
0.804 5.902

815 5.600 23.552
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Minimizing COE

In the case of standalone microgrid, it can be seen from Table 4
that the COE increases significantly, in comparison to the COE of
the grid-connected microgrid (Table 2). This is reasonable and
expected because, firstly, there is practically no energy sold (Eq.
(30)) and, secondly, forcing the microgrid to function autono-
mously sets much more restrictions to the whole problem meaning
that the total annual energy served has to be produced by the dis-
tributed energy resources of the microgrid. Also, the total DG rated
power is very low, especially of the non-dispatchable units,
whereas the battery power and energy rating are much higher. Less
energy is produced, resulting in lower energy losses (Table 4). The
importance of energy storage systems in standalone microgrids is
thus proved again in this case.

In Figs. 7 and 8, the daily battery cycles (at buses 18 and 2,
respectively) for the average day of each season are presented.
Night-charging batteries (bus 18) are mostly active in the summer
and fall (Fig. 7), which is not the case in Fig. 8 for the day-charging
batteries (bus 2). Both battery types, however, seem to function
only at distinctive time intervals.

Conclusion

The main contribution of this paper is that it introduces the
simultaneous capacity optimization problem of DG and storage
in grid-connected and standalone microgrids. More specifically, a
methodology has been proposed to optimally integrate DG and
energy storage units in microgrids operated either grid-connected
or standalone. Simulation results were presented and discussed for
a 31-bus medium voltage microgrid, considering grid-connected
and standalone operation. The microgrid can contain two types
of distributed resources: dispatchable (biomass and battery) and
non-dispatchable units (WT and PV). It was found that the more
distributed resources are put, the better the performance of the
system, since, depending on the selected objective function, the
total annual energy losses of the microgrid are minimized or the
cost of energy is minimized. Additionally, the power exchange
between the microgrid and the main grid is also highly reduced,
as the DG and storage units make the microgrid much more auton-
omous. The maximum reduction in the total annual energy losses
of the microgrid or in the cost of energy can be achieved in its grid-
connected operation. The results show that, among the four differ-
ent distributed resources considered (WT, PV, biomass, and bat-
tery), the most effective and necessary element for the
standalone microgrid are the battery energy storage systems, while
the necessary DG units are coming after in terms of priority.
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